
Bilkent University

Senior Design Project
Project short-name: Neophyte

High Level Design Report

Ali Soyaslan, Oğuz Liv, Umut Akös, Gülce Karaçal

Supervisor: Hali l Altay Güvenir

Jury Members: Uğur Güdükbay and Hamdi Dibeklioğlu

Progress Report

May 14, 2018

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of

the requirements of the Senior Design Project course CS491/2.

Department of Computer Engineering

2

Contents

1.0 Introduction __ 3

1.1 Purpose of the System __ 4

1.2 Design Goals __ 4

 1.2.1 Usability __ 4

 1.2.2 Efficiency ___ 4

 1.2.3 Extensibility ___ 5

 1.2.4 Security __ 5

 1.2.5 Reliability __ 5

1.3 Definitions, acronyms, and abbreviations ______________________________________ 5

1.4 Overview ___ 6

2.0 Current Software Architecture __ 7

3.0 Proposed Software Architecture ___ 8

3.1 Overview ___ 8

3.2 Subsystem Decomposition ___ 9

3.3 Hardware/Software Mapping ___ 12

3.4 Persistent Data Management __ 13

3.5 Access Control and Security __ 13

3.6 Global Software Control ___ 13

3.7 Boundary Conditions __ 14

4.0 Subsystem Services __ 15

4.1 Client ___ 15

 4.1.1 ScreenController Subsystem ___ 15

 4.1.2 Graphics Subsystem __ 16

4.2 Server ___ 17

 4.2.1 Logic Tier ___ 18

 4.2.2 Data Tier __ 19

5.0 References __ 20

3

1.0 Introduction

In a rapidly digitizing world, having technical skills is very crucial since, nowadays; almost

everything requires some form of programming. As technology has been developing, we have

become more dependent on it and use various technologies to accomplish specific tasks in our

daily lives. Technology is being implemented in almost every section of our lives and business

structures. This is the reason why, many countries such as England, Singapore, Estonia and US

have started programming education in early ages, because the sooner a person learns how to

create programs, the stronger their problem solving abilities get. This education also amplifies

their computational and analytical thinking skills. For instance, UK made the most ambitious

attempt to get kids coding, with changes to the national curriculum in 2013. ICT – Information

and Communications Technology – is out and replaced by a new “computing” curriculum

including coding lessons for children as young as five [1]. Such knowledge is important not only

to individual students’ future career prospects, but also for their countries’ economic

competitiveness and the technology industry’s ability to find qualified workers [2].

However, it appears that Turkey is a little belated to educate children about programming

compared to other countries. According to International Computer and Information Literacy

Study (ICILS), who conducted among students between 6-15 years from all over the world in

2013, it has been acknowledged that only 1% of students from Turkey have advanced computer

knowledge. On the other hand, 35% of students from Korea, 34% of students from Australia and

33% of students from Poland have advanced knowledge about computers and programming [3].

In order to offer an effective and simple solution for this problem, the project Neophyte will be

proposed. With Neophyte, we aim to teach children how to code while making them entertained

by playing different kinds of games they like. Neophyte creates a platform where children can

interact with each other in an exciting way and improve their programming skills.

In this report, we aim to provide an overview of the architecture and design of the system that we

will develop. First of all, the existing systems that are similar to ours, their qualities, and the

missing features of the available systems are described. Then the details of our system design are

listed. Subsystem decomposition, architectural plans of subsystems, and hardware/software

4

mapping of these components are illustrated. Design decisions such as persistent data

management, access control and security, boundary conditions are reported in detail. Finally, the

functions of subsystem services and their interactions are outlined.

1.1 Purpose of the System

The main purpose of Neophyte is to provide a unique platform in which children can learn basic

concepts of programming while playing various types of games designed for their entertainment.

We aim to raise awareness among children about computer science topics by dragging their

attention to these topics with games and fancy graphics.

 In order to keep children focused on game, we will need to provide some interesting

features about our program. To do so, we will offer an exciting scenario which will be about

game flow. Besides the scenario, there will be in-game activities that allow users to proceed next

stages. Also, in-game interaction with other users and cooperative missions are what

differentiates our program from others because Neophyte will provide a competitive

environment for children in which they can easily interact with each other.

1.2 Design Goals

1.2.1 Usability

 The user interface must exhibit conceptual integrity and simplicity.

 The user interface should be user-friendly in this way; users can spend their time,

enjoying programming rather than struggling to figure out how to play the game while

writing code segments.

1.2.2 Efficiency

 The system should react to user’s input under 10 seconds.

 Load time should be minimal.

5

 Controls should contain the minimum delay possible.

 The compilation time should be at most 20 seconds.

 1.2.3 Extensibility

 The application should be able to include and support new features with ease in order to

maintain the excitement and interest of the user, so it should be developed in a way that

makes it easy to update.

1.2.4 Security

 The system should ensure security of users’ personal data & privacy and in order to

address this goal, the application will be accessible only when user logs in to his or her

account with his and her password.

1.2.5 Reliability

 In game compiler will be kept up-to-date in SDK terms.

 Coding assignments are strongly related with gameplay so that system integrity will be

ensured.

1.3 Definitions, acronyms, and abbreviations

UI: User Interface

API: Application Programming Interface

Server: The part of the system which is responsible of logical operations, scheduling and data

management

Client: The part of the system that the user interacts

HTTP: Application Layer Protocol

6

1.4 Overview

Project Neophyte is a learning tool for children in elementary school and middle school ages.

Strictly speaking, ages ten to fourteen. This tool helps children understand the concept of

programming by teaching them the way of computer scientists and basics of simple algorithms.

As it was discussed in the introduction, it is important for children to learn algorithm creation in

early ages, as it will affect their problem solving and computational thinking skills.

This project aims to raise awareness among children about computer science topics by dragging

their attention to these topics with games and fancy graphics. It is important for these games to

be easy to understand as it should be challenging enough. Our baseline for these games will be

psychological researches and pedagogical reports on child informatics.

Our application will create a real life simulation that will have real life problems that kids may

have. For example, kids might lose their keys or toys, or even their tablets or phones. There will

be a quest for children to play in single player mode or multiplayer mode. Throughout the quest,

there will be mini-assignments for them to solve. In this quest, they may have to send a message

to their friend for him to come down to, for instance, basketball court to play with them. If they

want to send this message, they have to get the charge cable from their parents first, then they

have to find their tablet in their messed up room by cleaning it up. While cleaning their room,

they have to grab their belongings that are scattered around in closest element first fashion.

For kids in that age, it might be a little hard to figure out the code at once, twice or even ever.

That’s why we will implement an acting game mode for the first levels. They will move their

character around the room with arrow keys or W,A,S,D keys and pick up items with space key.

This will teach them how to use keyboard as well, since we want to raise kids according to needs

of the day. This type of games will get them to recognize the algorithms they will encounter in

their education or professional life. Then the games will become more abstract and second levels

will contain a box view for coding. It will still hold the concreteness by having blocks all around.

Children can play with these boxes in a sandbox fashion. They will create movements and

7

figures by changing block attributes and arrangements. The final levels will be completely

abstract and will contain coding fields for children to finally start real coding.

The language of this project is in Turkish and English for now. Normally, making these

applications in another language than English is not good for many students, because the

keywords of programming languages are all in English. Studying on foreign language basics are

sometimes complicating for programmers. On the other hand, we are making this project for

children in early ages of education, as our main mission is to endear coding to children, we will

have no such apprehension on language. Plus, many children in Turkey still do not get proper

English education in Elementary and Middle school.

Finally, this project also helps psychologists and pedologists in many ways, such as,

understanding a new way of children and a different way of communication with them. This

project may take the initiative for a new research area as children will be motivated to use this

system for both entertainment and educational purposes.

2.0 Current Software Architecture

According to our market research, there exist applications offered in the market to teach children

programming. These applications can be listed as follows:

 Blockly: This web based application is Google’s simplified programming platform. This

application helps kids in early ages of understanding programing concept. The help they

get on this topic is about defining the algorithms in a simpler manner with graphics

objects (jigsaw puzzles) [4].

 Scratch: This is another web based application from Massachusetts Institute of

Technology (MIT), that helps children build games with, again, using jigsaw puzzle parts

with different tasks. (i.e. a puzzle’s job is to create a for loop and another puzzle is for

boolean operations) This application is also good for building games for fun but it lacks a

8

mission. Without a mission, children are pointlessly wandering around the application,

trying to find a purpose for their appliances [5].

 CodinGame: This is the last web based application that we have found on our area of

interest. This application is for more advanced coders, maybe around last years of high

school or university age. This application is also useful but not for children [6].

Although these applications have similar functionalities to our system, Neophyte will have

different and improved features than existing applications. First of all, Neophyte allows users to

play the game in multiplayer mode. There will be in-game trophies based on completing time,

lines of codes of the given tasks, which can be decided by test cases. Moreover, Neophyte

provides children a platform in which they can follow each other and send direct messages.

Therefore, this project will offer an improved and engaging environment where children may not

only learn to program, but also have opportunities to be creative using programming.

3.0 Proposed Software Architecture

3.1 Overview

In the subsystem decomposition, the subsystem structure of our system is described thoroughly.

Partitions of the system with classes in each layer are shown. Then, system’s mapping of

hardware/software will be provided which presents different parts of our system and how it

works using different hardware components. Persistent data management is also present that

explains how we store our data. Access control and security defines access and exit boundaries

of our systems. In global software control, how our server acts as main controller is discussed as

well as the general flow in the system. In the end, boundary conditions such as initialization,

termination and failure conditions.

9

3.2 Subsystem Decomposition

Neophyte follows a Client-Server architectural style in order to effectively respond/process

concurrent user requests. The web application will constitute the client part of the system. The

client requests services from the server to function and to respond the needs of the users.

On the server side, the system will be managing database and compiler. This server must be as

efficient as possible, because, it processes too much data when command is given by the user.

The primary goal is to achieve highest performance while sustaining the lowest response time for

each user request. In other words, the client will be focusing on taking the requests of user and

on responding them while server will be handling data retrieval tasks and compiler compiles if

necessary.

Our system will be divided into 3-Tier system architecture which are: Presentation Tier, Logic

Tier and Data Tier. The Presentation Tier, which is the topmost tier, includes the visual

components of the system and it can be found mostly on our client-side application. This tier is

responsible for managing the interactions with the user. The Logic Tier contains the fundamental

operations and all the functionalities of the Neophyte in the Server side of system. Moreover, the

Data Tier is responsible for database management and primarily resides on the server side.

10

Figure 1: Subsystem Decomposition

11

Figure 2: Detailed View of Subsystem Decomposition

12

3.3 Hardware/Software Mapping

 Figure 3: Component Diagram

 The client of our application will be any browser on market. As our application will be a web

application that will run on a mobile application, we will implement a browser view in a mobile

application for tablets. This way, children at school can also use this project from the PC labs in

their school. Neophyte will make use of tablet screen to interact with the user. Server side of the

system consists of Database Management System. Also, due to the fact that the data will be

saved in the Data Server, it will not have significant memory requirement. Internet connection

will be necessary for the client machine to retrieve persistent and real-time data from the server

side. The Client Machine will communicate with the Web Server using HTTP requests.

13

3.4 Persistent Data Management

According to our plan, we are going to store various data about users such as name, e-mail

address, password, location, company and school. Some of the data that we will store may be

changed by users because they might want to change their locations and personal data.

Moreover, game scores will be changed frequently as the user completes a game or is beaten by

another user during the competition. Also, we might have to response each modification very

quickly. In that case, we cannot afford expensive database operations. Hence, we decided to use

PostGRE.

3.5 Access Control and Security

We will ask users to sign up and login to the program in order to use the application. Users will

be allowed to change their personal information by modifying personal settings. Also, users are

able to search other users and to add others as friends in order to play a game together.

Moreover, security is one of the key concerns of Neophyte. All users register to the system with

a username/email and a password. The user information will only be shown to the user only.

These data will be secured by using third party security system. Users must login in order to

access their personal details. Apart from user request, we will not distribute irrelevant user

information to third party applications. Furthermore, our application will not access or connect

any other application without user’s consent.

3.6 Global Software Control

Neophyte will have a centralized event driven control system. The user logins to the system by

entering his/her username and password. Then, the system checks whether the

username/password combination exists in the database or not. If the combination exists, the

application gives the user permission to login to the application. Additionally, in our system,

users are able to modify their personal information and to check their scores. When one of these

information is changed, Neophyte updates the related user’s profile.

14

 3.7 Boundary Conditions

Initialization

After the user launches the app, they will be brought to the login page, where they will be able to

enter their credentials and if successful, will be redirected to the main page. Otherwise they will

get an error.

Termination

The user can terminate the application by logging off. If he or she decides not to log out,

application will keep the account information and keep the user logged in. Apart from logging

off, user can also terminate the session by clearing the application data. If the application is not

closed, it will run on the background.

Failure

The application can cause a failure if there is no internet connection. Additionally, termination of

the application while the application is performing an action, might cause failures.

15

4.0 Subsystem Services

This part of the report analyzes the subsystems of our system and describes the services they

provide in detail.

Figure 4: Detailed View of Client Subsystem

4.1 Client

4.1.1 ScreenController Subsystem

Figure 5: ScreenController Subsystem in Client

16

 ScreenController : It controls which screen to be loaded and also handles loading

process.

 LoginSC: It loads login screen when login button is clicked on home screen.

 PlayerSC: It loads the player information such as his/her points, rank and collectibles.

 HomeSC: It is the initial opened screen of our program. It offers player to login or get

some information about program and its creators.

 InfoSC: It loads credits of the game on the screen.

 DashboardSC: It loads rankings of the all players in our program. Also, It allows to view

player screen when any player clicked on the list.

 GameSc: It loads the game when New Game button or Continue button clicked.

 MessageSC: It loads message screen when message button clicked on player screen for

a specific player.

4.1.2 Graphics Subsystem

Figure 6: Graphics Subsystem in Client

17

 Graphics: It is the most fundamental attribute for graphics. Other specific graphic

objects are inherited from this class and also its functionalities.

 Player: It loads player graphics. It depends on the user, so proper graphics are loaded

from DB according to player.

 Collectibles: It includes the representations of collectibles in the game. Those are cannot

be changed so they are also loaded from database according to game flow.

 Buildings: Another crucial graphical content of our game is buildings. There are not

much building species; however their designs are controlled by this class.

 MissionGraphics: According to ongoing mission, graphics are loaded from this class.

 Map: It loads all contents of the Map according to selected game mode, game stage and

player.

4.2 Server

 Figure 7: Detailed View of Server Subsystem

18

Server side is one of the hearts of our project and allows our program to connect to players and

its database. Also, in our server architecture we have our compiler in order to compile in game

codes. This compiler is going to test in Java.

In our database, all of the entities about players are going to be stored. Also graphics are going to

be stored in our database. To proper use of our database, PostGRE SQL will be used. All of the

server side components will be deployed from Amazon Web Service (AWS).

Client Side is going to interact with API directly. In order to interact, API is going to fetch

instructions from client, and loads proper graphics and content of the program according to

request. This process guarantees that there are no direct interactions with data storage.

Furthermore, according to game stage, API directs flow to compiler and then continues to control

flow according to user commands.

4.2.1 Logic Tier

Logic Tier is the layer which communicates with the database and client. It processes the

incoming data. This tier contains Client Fetcher and Data Flow Handler, GameLogic and the

ConnectionController, which deal with the core business logic.

 ClientFetcher: This class communicates with the client. According to client’s

commands, this class directs data to Data Flow Handler.

 Data Flow Handler: According to command and its perception in the program, this class

directs data to proper classes.

 Game Logic: This class controls game commands according to user commands. This

class directly communicates with client in order to execute client’s commands

immediately.

 Connection Controller: This class handles connection according to game mode. If

single player mode is selected, then the server establishes the connection for the single

player. If it is selected as multiplayer, then the connection will be established for

multiplayer mode.

19

 Compiler: This class compiles codes and returns the result to the data flow handler, if the

code is working or not. This class can be used only in programming assignments of the

game, that’s why it is connected to Game Logic class.

4.2.2 Data Tier

Data tier is the layer which manages the data of software. It consists of only Database

Management System. Database Management system handles relational database operations.

 User: It contains user’s data to be represented in the software.

 Profile: It includes in-game user data to be represented according to user in the game.

20

5.0 References

[1] “Coding at school: a parent's guide to England's new computing curriculum,”

https://www.theguardian.com/technology/2014/sep/04/coding-school-computing-children-

programming Accessed February 17, 2018.

[2] “Adding Coding to the Curriculum,” https://www.nytimes.com/2014/03/24/ world/europe/

adding-coding-to-the-curriculum.html Accessed February 17, 2018.

[3] “İlkokuldan itibaren Kodlama dersi geliyor!,” http://www.sozcu.com.tr/egitim/ ilkokuldan-

itibaren-kodlama-dersi-geliyor.html Accessed February 17, 2018.

[4] “Blockly | Google Developers,” https://developers.google.com/blockly/

Accessed February 17, 2018.

[5] “Scratch - Imagine, Program, Share,” https://scratch.mit.edu/ Accessed February 17, 2018.

[6] “Coding Games and Programming Challenges to Code Better,”

www.codingame.com/start Accessed February 17, 2018.

https://www.theguardian.com/technology/2014/sep/04/coding-school-computing-children-programming
https://www.theguardian.com/technology/2014/sep/04/coding-school-computing-children-programming
https://www.nytimes.com/2014/03/24/%20world/europe/%20%20%20adding-coding-to-the-curriculum.html
https://www.nytimes.com/2014/03/24/%20world/europe/%20%20%20adding-coding-to-the-curriculum.html
http://www.sozcu.com.tr/egitim/%20ilkokuldan-itibaren-kodlama-dersi-geliyor.html
http://www.sozcu.com.tr/egitim/%20ilkokuldan-itibaren-kodlama-dersi-geliyor.html
https://developers.google.com/blockly/
https://scratch.mit.edu/
http://www.codingame.com/start

